Связь с редакцией: [email protected]

Как ученые получают снимки, сделанные космическими аппаратами

Вы когда-нибудь задумывались, как астрономы принимают снимки, отправленные на землю космическими станциями, которые бороздят просторы Вселенной на расстоянии в миллионы или даже миллиарды (Вояджеры) километров от нашего дома? Давайте разберем это на примере аппарата OSIRIS-REx.

В 2016 году к астероиду Bennu был отправлен небольшой аппарат OSIRIS-REx. В 2019 году исследовательская станция должна будет приблизиться к космическому телу и зачерпнуть с его поверхности вещества, которые помогут ученым лучше понять процесс образования нашей Солнечной системы. Суть миссии аппарата OSIRIS-REx проста: прилететь к астероиду, собрать образцы грунта и отправить их обратно на Землю. В своих лабораториях специалисты будут изучать “первозданное” углеродистое вещество, которое могло сохраниться на Bennu со времен рождения Солнечной системы и которое, скорее всего, является “строительным материалом” живой материи. Возможно, образцы с астероида помогут нам стать на шаг ближе к разгадке тайны появления жизни на нашей планете.

По мере приближения к объекту, аппарат будет фотографировать астероид и передавать на Землю снимки, выполненные камерами OCAMS, которые разрабатывались инженерами NASA в стенах Аризонского университета. OCAMS — это блок камер, состоящий из трех приборов: PolyCam (предназначена для съемки с далекого расстояния), MapCam (будет снимать выбранный район сбора проб в высоком разрешении) и SamCam (будет снимать процесс забора проб).

Космический аппарат NASA исследует астероид Бенну

Прежде чем мы увидим на экранах своих компьютеров или телефонов фотографии, присланные OSIRIS-REx, ученым необходимо будет выполнить три важных шага: осуществить сам процесс съемки Bennu, передать информацию с зонда на Землю и принять данные с последующим получением изображений.

Шаг №1 — съемка астероида

Съемка — это работа, требующая синхронных действий между OCAMS и компьютерной системой космического аппарата. Солнечный свет, отражаясь от поверхности астероида, проходит через специальный объектив камер OCAMS, потом через встроенный фильтр, а затем “падает” на электронный чип, называемый прибором с зарядовой связью, или CCD-матрицей.

Поверхность CCD-матрицы OCAMS разделена на 1024 параллельные линии, каждая из которых дополнительно “разбита” на 1024 светочувствительных элемента, таким образом размер матрицы составляет 1024 на 1024, или 1 048 576 пикселей (пиксели формируют объекты, изображенные на снимке). Получается, что OCAMS имеет разрешение чуть больше 1-го мегапикселя (в 1 мегапикселе — 1 000 000 пикселей).

Члены команды Osiris-Rex

Каждый пиксель может передавать только один цвет, это может быть как сам цвет, так и яркость или вообще прозрачность. Цвет каждого пикселя кодируется электронной камерой в бинарный код, который обозначается цифрами 0 и 1 (составленное двоичное число называют битами), а затем этот код передается на центральный компьютер космического корабля. Компьютер ставит его в очередь, чтобы при первой удобной возможности (во время специального “окна”) передать на Землю.

Шаг №2 — передача изображения на Землю

При помощи технических систем, представляющих собой “канал передачи данных”, на Землю передается битовый поток информации в виде сигнала. Вначале информацию принимает ретранслятор для связи в глубоком космосе Small Deep Space Transponders, установленный на некоторых космических зондах, расположенных вблизи нашей планеты, затем ретранслятор перенаправляет данные на 100-ваттный усилитель Travelling Wave Tube Amplifiers, который используется для усиления радиочастотных (RF) сигналов в микроволновом диапазоне и в несколько раз усиливает мощность сигнала для последующей его передачи одной из трех бортовых антенн.

Комплексы сети дальней космической связи NASA

Скорость передачи данных на Землю зависит от того, какую именно из трех антенн применяют ученые для связи с нашей планетой. Самые высокие скорости получаются, когда специалисты используют для приема и последующей передачи сигнала 2-х метровую высокочастотную антенну High-Gain Antenna (HGA). Также они могут использовать антенну средней мощности Medium Gain Antenna (MGA) и низкочастотную Low Gain Antenna (LGA). Антенна HGA обеспечивает максимальную скорость передачи данных на Землю (914 килобит в секунду), LGA имеет довольно слабую мощность, а скорость передачи оставляет желать лучшего. Из-за этого она в основном используется для приема информации, а не для ее передачи. MGA представляет собой нечто вроде “золотой середины” — она обеспечивает умеренную скорость передачи потока данных.

Шаг №3 — получение данных

Сигнал на Земле принимает одна из антенн NASA Deep Space Network. После чего ученые “собирают” код на компьютерах и получают изображение.

Deep Space Network (DSN) — международная сеть радиотелескопов и средств связи, используемых для радиоастрономического исследования Солнечной системы и Вселенной, для управления межпланетными космическими аппаратами и приема космических сигналов. DSN представляет собой антенную систему дальней космической связи, состоящую из трех комплексов, расположенных в разных точках земного шара, которые удалены друг от друга примерно на 120 градусов долготы:

1) Комплекс дальней космической связи Голдстоун. Находится в пустыне Мохаве в южной Калифорнии, США, в 60 км к северу от Барстоу.

2) Мадридский комплекс глубокой космической связи. Расположен в 60 км к западу от Мадрида в в Робледо-де-Чавела.

3) Комплекс дальней космической связи в Канберре. Его можно найти в 40 километрах к юго-западу от Канберры, в долине реки Меррамбиджи на краю заповедника Тидбинбилла.

Такое стратегическое размещение позволяет постоянно наблюдать за космическими аппаратами по мере вращения Земли (частично перекрывать зоны действия друг друга). В поле зрения основных антенн DSN могут попадать зонды либо спутники-ретрансляторы сигналов, находящиеся на расстоянии до 55 миллионов км от поверхности Земли.

Антенна DSN с диаметром зеркала 70 метров

В каждом из трех комплексов имеется по одной антенне с диаметром зеркал 70 метров, по несколько антенн с диаметром зеркал 34 метра, антенны с диаметром зеркал 26 метров, а также по паре ультрачувствительных приемников и мощных передатчиков. Основную нагрузку по управлению космическими аппаратами несут антенны с диаметром зеркал 34 метра, так как они являются более новыми и эффективными.

Читайте нас в соцсетях: Twitter, Facebook, Telegram

Смотрите нас на youtube. Следите за всем новым и интересным из мира науки на нашей страничке в Google Новости, читайте в Яндекс Дзен наши материалы, не опубликованные на сайте

Нашли ошибку? Пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Подписывайтесь на нас в социальных сетях

Реклама
Последние статьи

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь

Реклама

Другие статьи автора

Рекомендуем

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: