На Международной космической станции прошел первый эксперимент по охлаждению атомов. Специалистам удалось создать конденсат Бозе — Эйнштейна (КБЭ), который появляется только при экстремально низких температурах, не встречающихся на Земле, сообщает Space Daily.
В мае 2018 года к МКС была отправлена Лаборатория холодного атома (CAL), чтобы изучить процессы, происходящее с этими частицами при температурах, близким к абсолютному нулю (−273,15 °C). При помощи CAL ученые хотели замедлить движение частиц и в результате получить экзотическую форму материи, нечто среднее между газом и жидкостью, известную как конденсат Бозе-Эйнштейна.
В 2014 году инженерам Лаборатории реактивного движения NASA смогли построить камеру для охлаждения атомов до температуры близкой к абсолютному нулю. В том же году в земном прототипе CAL ученые получили конденсат. Для этого в камеру были внедрены два типа охлаждающих устройств — лазеры, которые подавляют вибрации атомов и заставляют частицы охлаждаться, и магнитная ловушка, которая отбрасывает самые «горячие» атомы и оставляет внутри себя только самые холодные и неподвижные частицы.
Однако на Земле после отключения магнитной ловушки холодные атомы притягивались “вниз” и “умирали”, то есть существовали всего лишь несколько секунд (столько времени не хватит, чтобы изучить эти атомы), в космосе же они могут “жить” гораздо больше, вплоть до двух-четырех минут, из-за того, что там нет гравитации. Именно поэтому CAL и отправили на МКС.
В конце прошлой недели, а именно 27 июля, сотрудники проекта CAL сообщили СМИ, что на Международной космической станции их установка произвела КБЭ из атомов рубидия при температуре до 100 нанокельвинов, или немного выше абсолютного нуля (−273°C). Это ниже, чем средняя температура в межгалактическом пространстве (примерно −270°C). Эксперимент проходил удаленно, управлялся специалистами с Земли.
“При таких ультрахолодных температурах поведение атомов, составляющих конденсат Бозе — Эйнштейна, весьма отличается от чего-либо на Земле. Фактически этот конденсат характеризуется как пятое состояние материи, отличимое от газов, жидкостей, твердых тел и плазмы. Примечательно, что атомы КБЭ больше походят на волны, чем на частицы”, — сообщил Роберт Шотвелл, инженер Лаборатории реактивного движения NASA.
“Холодные атомы — это долгоживущие квантовые волны-частицы, которыми можно управлять”, — объясняет физик Роберт Томпсон, участник проекта CAL. — “На этих волнах-частицах мы сможем отточить наши квантовые технологии, изучить некоторые квантовые явления, научиться делать более точные измерения силы тяжести, исследовать волновую природу самого атома”.
Волновая природа атомов обычно наблюдается только в микроскопических масштабах, но КБЭ позволяет наблюдать это явление невооруженным глазом, следовательно, его становится намного легче изучать. Все ультрахолодные атомы принимают самое низкое энергетическое состояние и одинаковую волновую идентичность, становясь неотличимыми друг от друга. Вместо облака атомов появляется один “суператом”, который можно легко исследовать без увеличительных приборов.
Конденсат Бозе — Эйнштейна
Существование КБЭ теоретически было предсказано как следствие из закона квантовой механики Альбертом Эйнштейном на основе работ индийского физика Шатьендраната Бозе в 1925 году, а спустя 70 лет был проведен первый эксперимент. В 1995 году Эрик Корнелл, Карл Виман и Вольфганг Кеттерле в Объединенном институте лабораторной астрофизики (JILA) получили первый бозе-конденсат из газа атомов рубидия, охлажденный до 170 нанокельвинов, и спустя 6 лет за эту работу были удостоены Нобелевской премии по физике.
С тех пор ученые провели десятки экспериментов с КБЭ на Земле и даже в космосе на борту некоторых ракет. Но все опыты были кратковременными и не принесли значительной пользы. Лаборатория холодного атома является первой и единственной установкой на сегодняшний день, на которой ученые могут ежедневно проводить эксперименты по получению и исследованию конденсата Бозе-Эйнштейна и добиться реальных научных результатов, способных раскрыть фундаментальные тайны Вселенной.
В будущем на CAL ученые будут работать с температурами более низкими, чем с теми, с которыми они работали на земных установках.